首页> 外文OA文献 >Breaking spaces and forms for the DPG method and applications including Maxwell equations
【2h】

Breaking spaces and forms for the DPG method and applications including Maxwell equations

机译:打破DpG方法和应用程序的空间和形式,包括   麦克斯韦方程组

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Discontinuous Petrov Galerkin (DPG) methods are made easily implementableusing `broken' test spaces, i.e., spaces of functions with no continuityconstraints across mesh element interfaces. Broken spaces derivable from astandard exact sequence of first order (unbroken) Sobolev spaces are ofparticular interest. A characterization of interface spaces that connect thebroken spaces to their unbroken counterparts is provided. Stability of certainformulations using the broken spaces can be derived from the stability ofanalogues that use unbroken spaces. This technique is used to provide acomplete error analysis of DPG methods for Maxwell equations with perfectelectric boundary conditions. The technique also permits considerablesimplifications of previous analyses of DPG methods for other equations.Reliability and efficiency estimates for an error indicator also follow.Finally, the equivalence of stability for various formulations of the sameMaxwell problem is proved, including the strong form, the ultraweak form, and aspectrum of forms in between.
机译:不连续的Petrov Galerkin(DPG)方法易于使用“破损”测试空间(即,在网格单元界面上没有连续性约束的函数空间)实现。从一阶标准精确序列(不间断的Sobolev空间)派生而来的间断空间尤其令人关注。提供了将断开的空间连接到其完整的对应空间的接口空间的表征。使用破折空间的某些配方的稳定性可以从使用破折空间的类似物的稳定性中得出。该技术用于为具有理想电边界条件的麦克斯韦方程组的DPG方法提供完整的误差分析。该技术还大大简化了DPG方法以前对其他方程式的分析,还给出了误差指标的可靠性和效率估计值,最后证明了同一麦克斯韦问题的各种制剂的稳定性等价性,包括强形式,超弱形式,以及介于两者之间的形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号